LeetCode in Elixir

15. 3Sum

Medium

Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.

Notice that the solution set must not contain duplicate triplets.

Example 1:

Input: nums = [-1,0,1,2,-1,-4]

Output: [[-1,-1,2],[-1,0,1]]

Example 2:

Input: nums = []

Output: []

Example 3:

Input: nums = [0]

Output: []

Constraints:

Solution

defmodule Solution do
  @spec three_sum(nums :: [integer]) :: [[integer]]
  def three_sum(nums) do
    Enum.sort(nums)
    |> Enum.with_index()
    |> find([])
  end

  defp drop_all(list, val) do
    Enum.drop_while(list, fn {x, _} -> x == val end)
  end

  defp find([], ans), do: ans
  defp find([{x, _} | nums], ans) do
    ans =
      Enum.reverse(nums)
      |> two_pointers(nums, x, ans)

    drop_all(nums, x)
    |> find(ans)
  end

  defp two_pointers([], _, _, ans), do: ans
  defp two_pointers(_, [], _, ans), do: ans
  defp two_pointers([{_, j} | _], [{_, i} | _], _, ans)
  when i >= j, do: ans
  
  defp two_pointers([{z, j} | nums2], [{y, i} | nums], x, ans) do
    {nums2, nums, ans} = cond do
      x + y + z == 0 ->
        {drop_all(nums2, z), drop_all(nums, y), [[x, y, z] | ans]}
      x + y + z > 0 -> {drop_all(nums2, z), [{y, i} | nums], ans}
      true -> {[{z, j} | nums2], drop_all(nums, y), ans}
    end

    two_pointers(nums2, nums, x, ans)
  end
end